
HIToolbox:
Introducing HIView

Session 205

HIToolbox:
Introducing HIView

Ed Voas
HIToolbox Manager

What We Will Learn
•History of controls on Mac OS
•Introducing HIView

• What it is
• Advantages
• How to use it

Control Manager
•Introduced in 1984
•Some improvements in System 7
•Lots of new features in Mac OS 8 and beyond

• Embedding
• Many new controls
• Real APIs for structure stuffers

It Ain’t Perfect…
•16-bit coordinate space
•Erase-behind behavior
•At times, failure to clip to parent
•Inability to detach/attach subviews easily
•Overlapping views not supported

Introducing HIView

What Is HIView?
•New API to replace Control Manager
•Control Manager is compatibility API
•It is a real view system (no, really)
•This change will not affect you

• Unless you want to take advantage of it

Advantages
•Consistency and simplicity

• Reduce and simplify!
•Efficient drawing
•Unification of implementation

• Everything is a view! (almost)
•Easier to write custom widgets

Still Migrating…
•In Jaguar, HIView replacements incomplete
•If not in HIView.h, use Control Manager API
•Over time, HIView.h will subsume Controls.h

Controls vs. Views
•Controls are Views
•Views are Controls
•The difference is how they act

Features of HIView
•One-pass, composited draw model
•Modern coordinate system
•Quartz drawing
•Proper Z-ordering
•Ability to attach/detach views at will

“Draw or draw not. There is no erase.”
— Anonymous Jedi Master

Composited Drawing

Composited Drawing
•Predictable drawing order

• Back to front
• Respects hierarchy
• Respects Z-Order

•Eliminates pattern alignment issues

Efficient Drawing
•Goal: draw each opaque pixel once
•Only draw visible area
•How do we know what is visible?

• Parent bounds
• Siblings above view in Z-order
• Opacity of views above you

Invalidation
•Direct drawing is discouraged
•If you want to redraw, you must invalidate

• HIViewSetNeedsDisplay
• HIViewSetNeedsDisplayInRegion

•Drawing happens later, at predictable times
• Right before window flush
• Window painting

Less Is More
•General Rule: Toolbox never invalidates

• It is up to the views
•Well OK, sometimes it does

• Hide, show, move, resize
•View is responsible for invalidation otherwise

• Activate, enable, value changes, etc.

Coordinate Systems
•Two rectangles for every view

• Frame: Position within parent view
• Bounds: View’s local coordinates

•You move your view based on frame
•You draw and hit test based on bounds

ButtonButton

HIView Bounds

ButtonButton
0,0

100, 20

HIView Bounds

ButtonButton
30,30

130, 50

HIView Frame

Bounds/Frame Advantages
•Consistency

• These rectangles never change on you
•Frame concept is more efficient

• Subviews never need to change when
parent moves

Positioning Views
•Was two-stage process

• Move, resize
•SetControlBounds was a step forward
•Now it is much better

• HIViewSetFrame
• HIViewMoveBy
• HIViewPlaceInSuperviewAt

Converting Coordinates
•Three routines to help you

• HIViewConvertPoint
• HIViewConvertRect
• HIViewConvertRegion

•Converting to/from the NULL view
means window relative

New Geometry Types
•Floating-point types to replace QD types

• HIPoint
• HIRect
• HISize

•All HIView APIs are in terms of these new types
•Same as CG types (typedefs)

Two Graphics Models
•Quartz

• Recommended: native model
•QuickDraw

• Compatibility and quick migration

Quartz
•Native drawing system for Mac OS X
•Allows transparency, anti-aliasing
•Super-cool rad tricks

• Beziers
• Scaling
• Rotating

0,0

Quartz Coordinates

0,0

HIView Coordinates

Using Quartz
•Context is transformed— 0, 0 at top left

• Windowing system is top left
• Your existing code is top left
• Do not need to deal with window
resize issues

•Requires some new APIs to draw images
• HIViewDrawCGImage

QuickDraw Drawing
•For easy transition, QD possible

• Your view must advertise its need for QD
• Performance tax—need to sync

Off-screen Imaging
•Drawing controls into off screens was difficult
•Now it is easy!

• HIViewCreateOffscreenImage
•Yields CGImageRef
•Will be able to use for drag images, etc.

Demo

Enabling HIView

Enabling Compositing
•Per-window
•Must use CreateNewWindow
•kWindowCompositingAttribute

• Specifiable only at window creation time
•Standard handler is highly recommended

Windows With Compositing
•Operates completely in terms of views
•Painting merely paints the root view

• Paint procs are not called
• Content is not erased as usual

•When window resized, root view is resized
• Layout of children propagates from there

•Listen to kEventControlParentBoundsChanged

Windows With Compositing
•When window is hidden, so is root view

• Prevents unnecessary drawing
•When window is shown, view is shown/drawn

• Allows content to be prerendered
•Do not need to listen to
kEventWindowDrawContent

The View Hierarchy

Start at the Top
•With compositing on, hierarchy is deeper
•Root view is the window frame

• Window widgets are views themselves
• Contains a content view

•From root you can find any standard subview
• HIViewFindByID

Effect on CreateRootControl
•In compositing mode, CreateRootControl will err

• errRootAlreadyExists
•GetRootControl will yield the content root

• Maintains compatible behavior
•HIViewGetRoot will yield the true root
•Use HIViewFindByID

• kHIViewWindowContentID

Embedding
•Add new subviews…

• HIViewAddSubview
•Remove subviews…

• HIViewRemoveFromSuperview
•New controls we introduce will not have
an owning window parameter

Z-Order Fun
•We allow Z-order iteration

• HIViewGetFirstSubView
• HIViewGetLastSubView
• HIViewGetNextView
• HIViewGetPreviousView

•And moving in the Z-order
• HIViewSetZOrder

Mouse Event Handling

Mouse Handling: The Past
•Get event
•Call FindWindow
•If the result is in Content, call FindControl

• Call TrackControl/HandleControlClick
•If result in window widget, call TrackBox

• If successful, do whatever is expected

Mouse Handling: Now
•Get event
•Determine window from event parameters
•Find out which view of window to give it to
•Give the event to that view
•You do not treat window widgets differently!

New Event Parameters
•kEventParamWindowRef

• What window the mouse event is for
•kEventParamWindowMouseLocation

• Window structure-relative mouse location

Mouse Event APIs
•HIViewGetViewForMouseEvent

• Tells you what view should receive it
• Allows parent views to intercept clicks in
their children

•HIViewClick
• Sends a mouse down event to a view
• Can turn into a context click or normal one

Mouse Event APIs
•HIViewGetSubViewHit

• Raw subview hit detection
• Generally not used

•HIViewSimulateClick
• Great for making custom views accessible

•Well, I lied…use standard window handler!

rootView = HIViewGetRoot(window);
HIViewGetViewForMouseEvent(root, event, &target);
result = HIViewClick(target, event);

Handling Mouse Events
•Could not get easier

It Is Enabled—Now What?
•Eliminate calls to DrawControls, etc.
•Evaluate usage of Get/SetControlBounds

• HIViewGet/SetFrame
• HIViewGetBounds

•Eliminate any erase-behind you might be doing

Custom Content
•Must be wrapped into an HIView
•Not as hard as it sounds in most cases
•Required to ensure consistent behavior

#define kMyPhatClassID
CFSTR(“com.phatclass.superwidget”)

HIObjectRegisterSubclass(
kMyPhatClassID,
kHIViewClassID,
0, // no options
MyPhatEventHandler,
GetEventTypeCount(kEvents),
kEvents,
NULL, // no handler data
&classRef);

Creating Custom Views
•Custom views need to subclass HIView

Creating Custom Views
•Next, you need to instantiate your view
HIObjectCreate(

kMyPhatClassID,
NULL, // or initialization event as needed
&objectRef);

Typical Events to Implement
•Hit Testing
•Drawing
•Region Calculation
•Drag and Drop

HIViewPartCode
MyObject::GetPartHit(const HIPoint& inPoint)
{

HIRect bounds;
HIViewPartCode part = kControlNoPart;

HIViewGetBounds(GetViewRef(), &bounds);

if (CGRectContainsPoint(bounds, inPoint)
part = kMyControlPart;

return part;
}

Simple Hit Testing Example

The Draw Method
•Carbon Event: kEventControlDraw
•Two parameters

• Draw region: how much to draw
• Context: where to draw

Simple Drawing Example
void
MyObject::Draw(RgnHandle inLimitRgn,

CGContextRef inContext)
{

HIRect bounds;

HIViewGetBounds(GetViewRef(), &bounds);

CGContextSetRGBFillColor(inContext, 1, 0, 0, 1);
CGContextStrokeRect(inContext, bounds);

}

Calculating Regions
•Carbon Event: kEventControlGetRegion
•When the Toolbox needs certain regions,
it asks your view

•Two most important regions
• Structure region
• Opaque region

Structure Region
•This can extend outside your bounds

• Focus rings
•If you do not respond, your bounds is
your structure

•If you ever need to reshape yourself
• HIViewReshapeStructure
• Recomputes your structure and invalidates

Opaque Region
•Helps determine what is visible below you
•Optimizes drawing
•Used to determine window’s opaque region
•If you do not respond when asked for this
region, you are completely transparent

Drag and Drop
•Supported through several new Carbon Events

• kEventControlDragEnter
• kEventControlDragWithin
• kEventControlDragLeave
• kEventControlDragReceive

•You must turn on drag support for the window
• SetAutomaticControlDragTracking-
EnabledForWindow (whew!)

Drag and Drop
•If you do not respond to drag enter…

• No within, leave, or receive events for you!
• For efficiency

•If you may want the drag, return noErr from
your handler

• But do not do so if you know you do not

Drag and Drop
•Innermost ‘focused’ view gets ‘within’ events

• Containing views do not
•Also is target of the drop

Demo

Summary
•HIView is a huge step forward for Carbon!

• It frees us from the past
•Our future is clear

• Carbon Events, HIObject, HIView
•You are urged to at least start working with
the WWDC seed

• Feedback is critical to its success!

Roadmap
Hall 2

Wed., 2:00pm
Hall 2

Wed., 2:00pm

206 HIToolbox: New Controls
and Services:
Learn about the new tools at your disposal

Hall 2
Wed., 3:30pm

Hall 2
Wed., 3:30pm

207 Improving Performance
With Carbon Events:
How to make the most of Carbon Events

Room J1
Thurs., 10:30am

Room J1
Thurs., 10:30am

FF005 HIToolbox:
Come tell us what you think

Who to Contact
Xavier Legros
Mac OS X Evangelist
xavier@apple.com

http://developer.apple.com/wwdc2002/urls.html

HIView

ADC Member Site > Download Software > “Jaguar” Mac OS X

Documentation

•HIView Reference (Prelim)
•HIObject Reference (Prelim)
•HIToolbar Reference (Prelim)

For More Information
•O’Reilly “Learning Carbon”
•Carbon Developer Documentation
http://developer.apple.com/techpubs/macosx/macosx.html

Q&A

Xavier Legros
Mac OS X Evangelist
xavier@apple.com

http://developer.apple.com/wwdc2002/urls.html

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

© 2001 and TM Apple Computer, Inc. All rights reserved.

